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Abstract. Problems in the Landauer model for electrical resistivity are conventionally 
approached using transmission (T- )  matrix methods. Using a group theoretic approach it 
is shown that a transformation from the usual spinorial (SU(1,l) U Sp(2,R) or SL(2,R)) 
to a vectorial (SO(2,l)) representation allows successive regions to be considered as either 
successive non-Euclidean geometric operations or boosts. By borrowing a T-matrix method 
from the model’s optical analogue, that of propagation in plane-parallel (Fabry-Perot) 
media, an exact treatment of a regular (Kronig-Penney) lattice is developed, showing that 
transport is via delocalised states with vanishing resistance as expected. Using the analogue 
to elucidate the coherent multiple scattering nature of the Landauer model, it is seen that 
the model’s validity is restricted to mesoscopic samples, i.e. those of length L < 19 where 
I S  is the coherence length. Thus previous problems in calculating average resistances using 
Landauer models are associated with ‘universal fluctuations’ and quantum interference 
effects, with coherent propagation of the wavefunction as their origin. A proper treatment 
of incoherent scattering, valid for samples considered to be composed of units of length 
L > 19, gives classical (Ohmic), additive scaling of resistance, contrary to an oft-quoted 
scaling theory of resistance and localisation. 

1. Introduction 

In 1957 Landauer proposed a one-dimensional model for electrical resistance in random 
alloys, whereby resistance is due to scattering from the static disorder [l]. The 
model’s simplicity and the curious nature of the results, namely an exponential length 
dependence of the resistance, have led to a considerable volume of studies based on this 
formalism. Attempts have been made to generalise the theory to higher-dimensional 
samples [2-51, to link this non-Ohmic nature with (Anderson) localisation [6, 71, and 
numerical studies have been used to confirm the length dependence [8]. Being in real 
space, the model is more easily visualised than the traditional reciprocal-space models 
and is unique in regarding the current as the driving force, which in turn leads to the 
potential difference required to maintain this current [9]. 

The Landauer model is based on solutions to the one-dimensional, time-independent 
Schrodinger equation in a single-electron approximation, so that a pseudo-potential 
representing both interactions with the lattice and the remaining electrons is used. 
Transmission (T- )  matrix methods are a powerful tool which enable the construction 
of solutions to the Schrodinger equation in a composite region from solutions for 
the component regions. By considering the group theoretical properties of T-matrices 
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it is shown that one can move from the usual 2 x 2 spinorial to a 4 x 4 vectorial 
representation allowing new insight into the composition of products of T-matrices. 

Another area in which T-matrices have been used is in the design of thin-film 
optical devices. Such Fabry-Perot problems are an optical analogue and are seen to 
provide two valuable insights into the limitations of the Landauer model. Firstly the 
Landauer model is seen to be limited to multiple coherent scattering, whereas it is well 
known that incoherent scattering is intrinsic to conventional electron transport models. 
Secondly, in the same way that Fabry-Perot devices are a limited set of possible optical 
structures, it is seen that the Landauer model is limited, for realisable materials, to 
composites of a plane parallel nature. 

Using an old method for solutions to optical propagation in a periodic ab-type 
multilayer, it is shown that the archetypal problem of an electron in a periodic potential 
can be solved exactly. Furthermore, this solution shows the expected behaviour that 
transport is via delocalised states with a vanishing resistance. 

By relating the T-matrix algebra to a multiple scattering formalism, it is shown 
how incoherent scattering may be included, though this is at the expense of the T -  
matrix algebra. A previous result for incoherent scatterers, central to scaling theories of 
resistance and localisation [lo], is shown to be in error and pure incoherent scattering 
leads to Ohmic, linear scaling of resistance with length. 

The coherence length 14 at which the wavefunction’s phase becomes random is 
seen to be of central importance. Constructing a conductor from units of length 
L > 14 allows one to use Ohm’s law to calculate the overall resistance from the 
individual resistances. For conductors of length L < 14 coherence is important [ l l -  
131 and previous Landauer-type results are viable. Thus, two curious results of the 
Landauer model are explained. The first, the difficulty in defining an average resistance 
for a representative sample [14], is associated with the non-commutative nature of 
the transmission matrices, and has lead to many novel approaches, such as defining 
‘typical’ rather than average resistances [15] and calculating the higher moments of the 
resistance [16, 171. The second, is the ability to construct a sandwich sample of the 
form ABA and, through the proper choice of B, ensure that the overall resistance of 
the structure vanishes, regardless of how great the resistance of sample A [18]. Both 
of these effects are unphysical for macroscopic samples, but do occur on sufficiently 
small length scales where the coherent Landauer model applies, the former being 
associated with the ‘universal fluctuations’ [19, 201 in the resistance of small-scale 
samples, and the latter being one of the phenomena associated with multiple quantum 
well semiconductor structures [21]. 

Thus it is seen that the Landauer model is adequate for small samples exhibit- 
ing ballistic transport, but that at large scales, the dominant, incoherent scattering 
invalidates the model. 

2. The Landauer model 

The starting point for the Landauer model is the time-independent Schrodinger equa- 
tion 

(A2/2m)(d2y/dx2) = ( V ( X )  - E )  y (1) 

where V ( x )  represents the pseudo-potential due to the lattice and the remaining 
electrons. Whilst the standard semi-classical methods start with a periodic V(x), 
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Landauer's original paper used this equation as the starting point for an analysis of a 
spatially disordered conductor whence V (x) is assumed to be aperiodic. 

In this section the tools which have been used to investigate equation (1) will be 
considered, since this gives considerable insight into the physics of the Landauer model. 

2.1. Transmission matrix methods 

The spatial evolution of the solution to equation (1) in regions where the potential 
V ( x )  is discontinuous is followed by ensuring the continuity of the wavefunction and 
its first derivative. This is conveniently and concisely handled through the introduction 
of transmission ( T - )  matrices (solutions in the WKB approximation can similarly be 
traced through T-matrices). There are a host of equivalent representations for the 
T-matrices, the two most natural being that (type-I) [22, 231 relating the vectors 

on either side of a discontinuity in the potential, where denotes the spatial derivative, 
whilst the second, spinor representation (type-2) [24] is related to the first by 4 = U+ 
and connects vectors 

where y', up to a phase, denotes the amplitude of the forward/backward travelling 
component in a region with wavevector k .  

In both cases the determinant of the transmission matrix is one, a requirement 
resulting from the restriction to a real potential function, V ( x ) ,  ensuring that the prob- 
ability current density, Wronksian, and hence electrical current in the Landauer model, 
is conserved [15]. Further restrictions on the relationship between the components of 
a type-2 T-matrix may be obtained through symmetry considerations as described by 
Merzbacher [25]. 

For an arbitrary real, symmetric barrier centred at the origin, the T-matrix has. the 
form 

where t and r are the transmission and reflection amplitudes, perhaps more commonly 
seen in the S-matrix [25, 261 : 

qout = ( rt*) q i n .  (3) 

Within the Landauer model, the relation between the resistance and microscopic 
parameters is [I, 271 

R = (2nh/e2)p 

where p is a dimensionless resistance, given by the ratio of the reflection (albedo) and 
transmission probabilities, lri2/Itl2. This basic equation has been extended and verified 
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by numerous authors [28, 291, a particularly clear discussion of its relationship with a 
classical picture being in the review by Erdos and Herndon [14]. 

In principle then, with knowledge of the potential as a function of x, the individual 
T-matrices and hence the overall T-matrix for the region to be studied can be calcu- 
lated; the resistance is then obtained directly from the off-diagonal elements. Of course 
for a realistic material, represented by a series of discontinuities in the potential, the 
overall T-matrix is a product of a very large number of matrices, so that numerical 
approximations are commonly made. 

2.2. Group theoretical considerations 

A recent embellishment to the discussion of T-matrix methods has been their classi- 
fication in group theoretical terms [18], the restriction to a particular group being an 
embodiment of the symmetries inherent in the solutions to equation (1). Thus it can 
be shown that, for any region: its type-2 matrix belongs to either SU(1,l) or Sp(2,R), 
whilst its type-1 matrix belongs to SL(2,R). This information is sufficient as a basis 
of a random matrix approach [30], though some assumption has to be made as to 
the detailed distribution of the matrices. Perhaps more important is that the 2 x 2 
matrices form the basis of a projective representation of the special orthogonal group 
in (2 + 1) dimensions, SO(2,l) (a particularly transparent discussion of the relationship 
between SO(2,l) and its associated 2 x 2 matrix representations is included in the 
review by Balazs and Voros [31]). This allows a move from a spinorial to a vectorial 
representation, in an exactly analogous fashion to the correspondence between the 
Jones (SU(2)) and Mueller (SO(3)) matrix representations of geometrical optics [32], 
vectors and operations in the orthogonal representation being more readily visualised. 
A simple discussion of the relationship between spinorial and vectorial representations 
can be found in [33]. 

The path to the 4 x 4 representation can be seen by decomposing the density 
matrix (corresponding to the coherency matrix of Jones calculus) using the Pauli spin 
matrices [34] 

t + z  x-iy 
w+ = ( x f i y  t - z  

to form a null 4-vector, xp = (t, x, y, z ) ,  where the appropriate components are 

For the corresponding decomposition in the case of the coherency matrix, these four 
real quantities are the only directly measurable quantities, the Stokes parameters, whilst 
the corresponding 4-vector is the Stokes vector. 

The equality, t2 = x2 + y2 + z 2  ensures the null quality of the vector, whilst the 
invariance of the Wronksian of equation (l), corresponding to the y-component or 
more physically the electrical current in the Landauer model, means that this equality 
can be written as t2 - x2 - z2 = const = 12 .  It can now be seen that all solutions lie 
on the surface of an hyperboloid, so that any T-matrix connects two points on this 
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surface and hence can be considered to be a Minkowskian (Lobachevskian-Bolyai) 
geometrical operation [35, 361. (The geometrical nature of SU(1,l) mappings has 
recently been discussed [37].) Thus, the overall T-matrix (4 x 4) for a series of regions 
can be described as the geometrical operation which is the resultant of the succesive 
application of the geometrical operations corresponding to the T-matrices (4 x 4) for 
the component regions. 

Whilst general aspects of the orthogonal group mapping have been noted elsewhere, 
the decomposition of regions of constant potential has yet to be considered. As an 
example the type-2 T-matrix for a region of length b and wavevector K, equation (6), 
can be decomposed; 

K-'I2 0 ) ( cosKb s inKb)  ( K'I2 
B =  ( 0 K'12 -sinKb cosKb 

and corresponds to a boost of rapidity In K in the z direction, followed by a rotation of 
angle -Kb/2 about the y axis, and finally a boost of rapidity In K in the -z direction: 
for imaginary K, the rotation above is replaced by a boost of rapidity Kb/2 in the x 
direction. Thus, it is possible to analyse a discontinuous series of constant potentials 
in terms of products of boosts along the x and z directions and rotations about the 
y axis (the hyperboloid surface lies in the x, z ,  t space). The algebra of boosts and 
rotations is well documented [38], so this may prove to be a useful representation for 
Landauer-type problems. 

2.3. The optical analogue 

The Schrodinger equation in one dimension has two analogues [39] : the electrical 
transmission line, and optical Fabry-Perot (FP) problems [40]. The FP analogue of 
a lattice of the Kronig-Penney type is a series of parallel optical plates, where the 
electron wavevector is replaced by the s-component of a normally incident, coherent, 
light beam [41]. Many results can be carried over directly between the different 
systems (transmission line analogues are frequently used in discussing FP systems 
and vice versa [42, 43]), the reflection and transmission amplitudes being replaced 
by the complex Fresnel coefficients. Matrix methods for FP problems have a long 
history [44], and have been extensively used to predict properties for multilayer film 
devices: for instance, the type-1 matrices are entirely analogous to the Herpin matrix 
representation [45], whilst a type-2 representation may be traced to Abelis' work [46]. 

Since in the FP problems the optical wave is treated as being coherently propagated, 
the analogy then implies that the electron wavefunction is also being coherently 
propagated. The correct treatment of incoherent scattering and the multiple scattering 
nature of the Landauer model will be treated in a later section. 

It is also obvious from the analogue that realistic (three-dimensional) materials 
which exhibit the Landauer behaviour correspond to plane parallel devices. In the same 
way that the optics of planar stratified materials is removed from that of particulate 
media, one may expect that the Landauer model is restricted to an unrepresentative 
class of materials. 

2.4.  The Kronig-Penney Lattice 

The simplest potential profile to consider is the Kronig-Penney lattice [47] (figure I), 
the periodicity of the lattice allowing the overall T-matrix for an n-period sample to 
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be written [25] 

$U) = (AB)"A$(r) 

or equivalently 

$ ( l )  = (A'B')"A'4(r) 

where $ = U 4  and A' = UAU-', B' = UBU-'. Manydextbooks resort to a qualitative 
analysis [24, 251, whilst recently a numerical method has been used [48], though 
the exact result can be obtained either using Chebyshev polynomials [49] or using 
Sylvester's theorem [50]. Interestingly, the equivalent optical problem was solved some 
time ago by Abel6s [51], where the regions I, I1 correspond to non-absorbing films of 
different refractive index. 

X 

Region I 1  Region I 

Figure 1. V ( x )  for a Kronig-Penney lattice. 

The appropriate T-matrices are 

cos ka (sin k a ) / k )  
A=(-ks inka coska 

cos K b  (sin K b ) / K )  
= ( - K  sin K b  cos K b  

(4) 

) (7) 
cos K b  + i i  ( k / K  + K / k )  sin K b  

i i  ( k / K  - K / k )  sin K b  
i-i ( k / K  - K / k )  sin K b  

cos K b  - $i ( k / K  + K / k )  sin K b  B ' =  ( 
where k = (V(I)/2m)'/*/ft and K = (V(I1)/2r71)~/~/ft. The product, AB, can be written 

) cosq + ip  6 -iy ( Gfiy  cos?-$  

where as at all stages in this calculation the trigonometric functions can be replaced by 
their hyperbolic counterparts as k, K and q become imaginary. With elementary matrix 
algebra, this matrix can be expressed in t e r m  of its eigenvalues and eigenvectors as 

-i sin q - ip i sin q - ip -i sin q - ip i sin q - ip 
-6-iy -6-iy 
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and hence the nth power of AB is 

(6 + iy)(sin nq)/(sin q )  
cos nq + ip(sin nq)/(sin q )  

cos nq + ip(sin ny)/(sin q )  ) * (6 - iy)(sinnq)/(sin q )  ( 
Since the remaining T-matrix, A, merely gives an insignificant phase change, the 
Landauer resistance can be written as 

where PI is the single barrier resistance, 

p1 = ( k / ~  - ~ / k )  sin2   b. 

The behaviour of ptot can now be separated into two distinct regions according as 
either the trigonometric functions, or the hyperbolic functions hold. In the hyperbolic 
case, the now typical Landauer phenomenon is found : the resistance diverges expo- 
nentially with n, but this is to be expected since this is in a forbidden region. In the 
allowed (trigonometric) region the resistance varies periodically with n, and deserves 
closer consideration. 

For a particular value of n, and sweeping across a region of energies such that 
y varies continuously through the allowed region, the resistance vanishes n - 1 times 
(The numerical analysis [48] missed the crucial vanishing, and leaves one wondering 
about the sensitivity of such studies.) This is entirely analogous to the vanishing 
of the reflection coefficient for particle waves incident on a square well at energies 
corresponding to the quasi-bound eigenstates [52]. The vanishing points for the 
periodic lattice then correspond to the quasi-free electron modes: the Bloch waves [53]. 

In summary it is seen that for an ordered lattice the results must be treated with 
some care, as the important regions can obviously be overlooked. An exponential 
scaling of resistance corresponds to evanescent behaviour in the disallowed electron 
energy bands, whilst in the allowed region delocalised states offer no resistance to 
electron transport. Thus the Landauer and standard models are entirely in agreement 
for the regular lattice. 

3. Scattering in the Landauer model 

In this section, first the relative importance of incoherent and coherent scattering and 
its length dependence will be elucidated and then, by reference to the optical analogue 
and its interpretation, the method by which incoherent propagation can be included in 
a Landauer-type model will be shown. 

3.1. The relationship with ‘traditional’ models 

Since the model uses only time-independent methods, it can only be expected to predict 
results for experiments in which the resistance is due solely to time-independent factors, 
i.e. where the timescales for the experiment are much greater than the timescales for 
the resistance giving mechanisms. The residual resistance for disordered alloys (the 
asymptotic resistance at T = 0 K), is due to static lattice disorder in the Hume- 
Rothery model [54], and hence would seem to fulfill these requirements. The Hume- 
Rothery results are good for simple, truly random alloys, and give a particularly 
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simple compositional law [55]. The Landauer model however, has always produced 
an exponential length dependence, and no compositional law. In both cases scattering 
is the only source of resistance, but crucially for the Hume-Rothery model scattering 
is treated as being incoherent (hence Fermi Rule-type summations [56]), whilst in the 
Landauer model the wavefunction evolves through multiple, coherent scattering. The 
importance of incoherent scattering is well known [57], its role in Joule heating being 
self-explanatory. 

In the familiar reciprocal space treatments of resistance the starting point is a 
regular lattice, from which the allowed modes are calculated. These are most simply 
seen in the Sommerfeld model [58], where they are merely the eigenmodes for the 
‘particle in a box’. Then residual resistance is due to deviations from regularity as in 
the Hume-Rothery model. It has already been shown that the Landauer resistance for 
a regular lattice vanishes periodically in the allowed region, so at this stage the two 
approaches are consistent. The difference in results for disordered lattices is due to the 
coherent treatment of scattering in the Landauer model as will be shown later. 

3.2. The multiple scattering nature of the Landauer model 

It has been seen in 52.1 that for a single barrier the S-matrix representation, equation (3), 
is equivalent to the T-matrix representation, equation (2), allowing the interpretation 
of the T-matrix for a sample in terms of its scattering amplitudes. It is this that allows 
an interpretation of the physical aspects of the T-matrix so here the composition of 
the overall T-matrix for two regions, in terms of their scattering amplitudes, will be 
considered. 

A sample of a conductor formed from two regions, each described through T- 
matrices (type-2), gives 

(8) 

an equation having no direct representation in terms of the individual S-matrices. 
This is because the equivalent S-matrix form would require all orders of scattering to 
be included: i.e. the T-matrix result is inherently of a coherent, multiple-scattering 
nature. Specifically, the total transmission amplitude (8) can be expanded to reveal this 
multiple scattering nature [59] : 

Thus the overall transmission amplitude is seen to arise from the summation over all 
possible scattering paths, and hence over all orders of scattering [60]. Interestingly, 
in optics the multiple scattering result is commonly used to establish the T-matrix 
representation [44]. 

Here then, the combination of two scatterers has been expanded in terms of 
individual scattering events which, certainly from a particle picture, are the basis for a 
discussion of the overall physics. 

3.3. Types of scattering and their length dependence 

The possible types of scattering can be placed into three categories: coherent, inco- 
herent and inelastic scattering. Inelastic scattering is necessarily not coherent, but is 
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meaningless in this model, as best seen by considerations of energy conservation, and 
will henceforth not be considered. 

If equation (1) is rigorously followed incoherent scattering is similarly a meaningless 
concept, since all obstacles induce the same phase change irrespective of the previous 
‘history’ of the wavefunction. Equation (1) is however an approximation, since‘ a 
realistic pseudo-potential V ( x )  will be expected to vary with time. Intuitively the time 
dependence of the position of the ‘lattice sites’ will be more pronounced that that of the 
detailed potential: i.e. lattice vibrations rather than electron-electron interactions will 
be more important in determining the time dependence of the pseudo-potential. This 
variation of the inter-site distance will lead to a difference in phase between the different 
orders of scattering in the expanded form of equation (9), and hence a breakdown 
of the coherent model and the T-matrix expansion (It has been noted that even the 
zero-point motion of the lattice is sufficient to dephase the wavefunction after a number 
of scattering events [61]). For small reflection amplitudes, the summation inherent in 
the left-hand side of equation (9) will be a reasonable approximation and hence the 
T-matrix representation will be adequate. At sufficiently short length scales an electron 
can be considered to have traversed the sample with little or no scattering: transport 
in this regime is dubbed ‘ballistic’ [62, 631 and coherent propagation dominates [64]. 

Interestingly, exactly similar arguments on the phase coherence can be used in 
discussing Anderson localisation [61, 651. Since the localisation phenomena is purely 
coherent [66, 671, arising from the time reversal symmetry of the wavefunction [68], the 
length over which such localised states can be considered to exist is similarly limited 
to small scales [69, 701 L c 14. 

One can then define a crucial length scale (time scale), the incoherence length 
14, after having traversed which the wavefunction loses its phase coherence (this 
can alternativley be interpreted in terms of a loss of time-reversal symmetry of the 
wavefunction [61]). Then, the scattering amplitudes for regions of length L 9 14 will 
have random phase, whilst those representing regions of length L < I4 will have a fixed 
phase. Of course both pure incoherent and pure coherent scattering are approximations, 
but in the limit of large and small scales, respectively they are exact. 

3.4. Coherent scattering in a disordered sample 

Landauer’s original paper considered a lattice where the position of the scatterers is 
randomly distributed, the analysis of which will be considered here. 

Taking the overall resistance directly from equation (8), gives 

where Re( ) denotes the real part. The argument which leads to exponential scaling 
of the resistance for a disordered sample is that one must average the combined 
resistance over a range of inter-obstacle distances. Since shifting either the scatterer, or 
the coordinate origin, causes a linear change in the phase of the reflection coefficient 
[8, 141, this amounts to an average over the relative phases of rl and r2, so that the 
resistance of the sample is 

leading to exponential scaling with length [lo]. 
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The scaling theory, based on a disordered, coherent scattering sample, leads to a 
standard deviation of the resistance which increases with length faster than the average 
resistance [18, 481, a result which has been linked with localisation [lo]. This result 
has lead to a number of attempts to define a more representative resistance [14-171 
but, as has recently been shown [20], is the explanation of the large fluctuations in 
the resisitance found amongst mesoscopic samples of normal metals [71], where the 
variance of the conductance is found to be independent of the bulk properties of the 
sample (hence the terminology 'universal fluctuations'). This non-classical behaviour 
is then associated with coherent scattering and hence samples of dimensions L < 14 
[ 11-1 31. 

3.5. Incoherent scattering 

By definition for incoherent scatterers, each order of scattering has a different phase, 
so the expanded, multiple scattering form of equation (9) is then 

where the zi are related to the inter-obstacle separation [60]. Now, the summation 
over the various orders of scattering, implicit in the left-hand side of equation (9), and 
which forms the basis of the T-matrix representation, cannot be made. The overall 
transmission probability for incoherent scattering may however be calculated : 

leading to the Ohmic, linear scaling relationship 

In this case the average resistance is well defined [48], and normal macroscopic 
behaviour is recovered. This Ohmic behaviour is then associated with incoherent 
scattering, that is with length scales L % 1,. 

The classic derivation of a scaling theory based on the Landauer model is by 
Anderson et a1 [lo], and is frequently cited e.g. [2-4, 6-9, 14-18, 28-30, 6-51. Their 
approach is to first calculate the net resistance of a pair of scatterers in series, then 
calculate the net resistance of a pair of such pairs etc., so that a macroscopic 'wire' is 
built. Correctly, they note that the coherence length is a scale at which; '. . . we might 
hope to begin to have a universality in the scaling process ... ', and that the phase 
of the reflection/transmission coefficients are completely uncorrelated at this scale. 
However, rather than treating this scattering as incoherent, an average is taken over 
the relative phases as was done in the analysis leading to equation (10). Hence, rather 
than calculating results for scatterers with random single scattering phases, they have 
obtained results for scatterers with random 'T-matrix' phases. Thus, their results are 
applicable to disordered, coherent scatterers, as discussed with regard to equation (10). 

It is now obvious that the universal scaling behaviour which begins at the coherence 
length is the familiar, additive, Ohmic result. Exponential scaling of conductance is 
then associated with mesoscopic samples ( L  < l,), and linear scaling with macroscopic 
samples ( L  =- 16). 
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4. Conclusions 

Central to the discussion of the Landauer model is the use of transmission (T-) 
matrices, which allow a compact description of the problem. The Landauer model 
was conceived as a method of describing electronic properties of disordered lattices, 
so in 8 2.2 group theoretical considerations are used to examine the general nature of 
solutions to the one-dimensional wave equation. It is pointed out that the symmetry of 
the wave equation leads to a representation of the problem in terms of the orthogonal 
group in (2+1) dimensions [18], equivalent to a vectorial representation of the spinorial 
problem. This leads to a more readily visualised representation of the Landauer model, 
complete with two new interpretations of the T-matrices. The first is that the action of 
any region of potential can be considered as a non-Euclidean geometrical operation, 
so that succesive T-matrices correspond to succesive geometrical operations. The 
second, an algebraic representation in terms of boosts and rotations, proves to lead to 
a particularly simple decomposition of regions of constant potential. 

The analogy between the wave equation in one dimension and the propagation of 
electromagnetic radiation in plane parallel, Fabry-Perot (FP) media [39, 411, described 
in 8 2.3, holds quite generally for the Landauer model, making more transparent the 
physical nature of the model. Importantly it is obvious that, in the model, propagation 
of the wavefunction is a multiple scattering, coherent process. The analogue also 
implies that the Landauer model can be applied to electron propagation in plane 
parallel media where coherent scattering dominates. Sandwich materials, such as 
multilayer heterostructure semiconductors [72, 731 and quasi-crystals [74, 751 may 
then provide a close connection with previous Landauer-type calculations, though the 
relative importance of coherent and incoherent scattering is currently under debate for 
these materials [76, 771. The interest in these devices is due to the novel transmission 
properties to be expected [76, 781, analogous to those of optical films [79]. 

By using a T-matrix description of a periodic potential, it has been shown that the 
overall T-matrix and hence the Landauer resistance may be calculated exactly. Such 
techniques are known in optics but have not been used for the case of the Kronig- 
Penney lattice. The result, that the Landauer resistance for such a model vanishes at  
the energies of the Bloch waves, shows an important consistency between the standard, 
semiclassical theories of resistance [53] and the Landauer model. 

In 83.3 a simple explanation of the length dependence of the relative importance 
of coherent and incoherent scattering and the crucial length scale 14 at which the 
wavefunction loses its phase coherence is introduced. At length scales L > 1, the 
time-reversal symmetry of the wavefunction is destroyed, which is then seen to provide 
a limit to the localisation length in disordered media [70]. These arguments also explain 
why theories of the resistance based on coherent scattering lead to results applicable to 
small samples (L < l 4 )  where little scattering occurs (ballistic transport). In such regions 
there is difficulty in defining an average resistance from the Landauer model [14-171, 
associated with the exponential length dependence of the resistance, which is the source 
of the ‘universal fluctuations’ of resistance for mesoscopic samples [20, 301. 

The correct result for the composition of incoherent scatterers is shown to lead 
to the familiar, additive scaling of resistance, a result which has eluded workers since 
Landauer’s original paper of thirty years ago [l]. This separation of coherent from 
incoherent electron transport in the Landauer model is thus seen to neatly separate 
classical (macroscopic) from quantum interference behaviour [59]. 

In summary, the Landauer model is adequate for small (L < l,), plane parallel 



4836 B S Sherborne 

samples, where ballistic transport operates. In this region two novel interpretations 
of the effect of scatterers have been introduced. For macroscopic samples (L  B l+)  
however, incoherent scattering must be included, which unfortunately invalidates the 
Landauer model and the associated T-matrix representation. Here, a new theory based 
on multiple incoherent scattering is required : one candidate being the two-stream 
approximation of radiative transfer [go], which leads to a linear length scaling. 

As a final note, the central role played by incoherent scattering in giving this 
macroscopic behaviour is obvious with hindsight. In an early paper [27], Landauer 
noted that the classical composition law requires the combination of probabilities rather 
than amplitudes, a result long associated with incoherence in the field of optics [81]. 
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